Cyclic Descents, Matchings and Schur-Positivity

نویسندگان

چکیده

A new descent set statistic on involutions, defined geometrically via their interpretation as matchings, is introduced in this paper, and shown to be equidistributed with the standard one. This concept then applied construct explicit cyclic extensions Young tableaux Motzkin paths. Schur-positivity of associated quasisymmetric functions follows.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic Descents and P-Partitions

Louis Solomon showed that the group algebra of the symmetric group Sn has a subalgebra called the descent algebra, generated by sums of permutations with a given descent set. In fact, he showed that every Coxeter group has something that can be called a descent algebra. There is also a commutative, semisimple subalgebra of Solomon’s descent algebra generated by sums of permutations with the sam...

متن کامل

2 00 5 Schur Positivity and Schur Log - Concavity

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...

متن کامل

Necessary Conditions for Schur-positivity

In recent years, there has been considerable interest in showing that certain conditions on skew shapes A and B are sufficient for the difference sA − sB of their skew Schur functions to be Schur-positive. We determine necessary conditions for the difference to be Schur-positive. Our conditions are motivated by those of Reiner, Shaw and van Willigenburg that are necessary for sA = sB , and we d...

متن کامل

Schur-Positivity in a Square

Determining if a symmetric function is Schur-positive is a prevalent and, in general, a notoriously difficult problem. In this paper we study the Schur-positivity of a family of symmetric functions. Given a partition ν, we denote by νc its complement in a square partition (mm). We conjecture a Schur-positivity criterion for symmetric functions of the form sμ′sμc − sν′sνc , where ν is a partitio...

متن کامل

Schur Positivity and Kirillov–Reshetikhin Modules

In this note, inspired by the proof of the Kirillov–Reshetikhin conjecture, we consider tensor products of Kirillov–Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2023

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/11761